ІНФОРМАТИКА і не тільки... 

***

  • КРИТЕРІЇ ОЦІНЮВАННЯ
  • Інструктаж БЖД
  • Комп’ютер і здоров’я
  • Статистика


    Онлайн всього: 1
    Гостей: 1
    Користувачів: 0

    Навчання та творчість

    Головна » Файли » АСТРОНОМІЯ » Ц І К А В Е. Астрономія

    Австралийские физики доказали, что реальности не существует
    17.07.2017, 17:01

    Пока что это верно только для объектов микромира

    Ученые из Национального университета Австралии провели квантовый эксперимент, который подтвердил известную теорию о том, что реальность не существует до тех пор, пока ее не измерит сторонний наблюдатель. Пока что она актуальна для объектов очень мелкого масштаба. Результаты эксперимента были опубликованы в авторитетном издании Nature Physics, - сообщает сайт «Новое время»

    Исследователи решили повторить известный эксперимент, который лежит в основе предсказания квантовой физики о природе реальности: никакой реальности не существует до тех пор, пока мы ее не измерим, по крайней мере, в очень маленьком масштабе.

    Исследователи задались вопросом: если речь идет об объекте, который может вести себя либо как частица, либо как волна, то в какой момент времени объект «решает», как именно себя вести?

    По логике, объект должен быть либо частицей, либо волной по своему происхождению, а следовательно не имеет значение, кто проводит измерения либо наблюдения за объектом, поскольку его природа от этого не изменится.

    Но согласно квантовой теории, это не так, она предполагает, что результат зависит от того, как объект измеряли в конце его пути. Австралийские физики нашли доказательства того, что все происходит именно так.

    «Наше исследование доказывает, что измерение решает все. На квантовом уровне реальность не существует, если вы ее не видите», - заключает руководитель исследования Эндрю Траскотт, физик из Австралийского национального университета в Канберре.

    Впервые подобный эксперимент был предложен американским физиком-теоретиком Джоном Уилером в 1978 году, который предлагал использовать лучи света, отраженные зеркалами. В те времена технологии не позволяли провести такой эксперимент, и только 40 лет спустя группа австралийских исследователей смогла реализовать идею Уилера, используя атомы гелия, взаимодействующие с лазерными лучами.

    Исследователи заключили атомы в состояние “конденсата Бозе-Эйнштейна”, которое позволяет наблюдать квантовые эффекты на макроскопическом уровне, а затем удалили все атомы кроме одного. Этот единственный атом пропустили между двумя лазерными лучами, которые выступали в той же роли, в которой мелкая сетка выступает для лучей света - в роли неравномерной решетки. Затем на пути атома была добавлена вторая такая «сетка».

    Это привело к искажению пути атома, он отправился по обоим возможным путям так, как это сделала бы волна. Иными словами, атом проходил двумя разными путями. Зато при повторном эксперименте, когда вторую «сетку» убрали, атом выбирал лишь один возможный путь.

    По мнению исследователей, тот факт, что вторая «сетка» была добавлена уже после того, как атом пересекал первое «распутье», предполагает, что атом, образно говоря, так и не определился со своей природой до того, как подвергся наблюдению (или измерению) во второй раз.

    «Предсказания квантовой физики относительно взаимодействия объектов могут казаться странными, когда речь идет о свете, который ведет себя как волна», - поясняетРоман Хакимов, сотрудник Австралийского национального университета, принимавший участие в исследовании, а эксперименты с атомами, которые имеют массу и взаимодействуют с электрическими полями, делает картину еще более невероятной.

    Проще говоря, если принять тот факт, что атом выбирал определенный путь на первом распутье, эксперимент доказывает, что будущие измерения могут оказывать влияние на прошлое атома, поясняет руководитель исследования Энди Траскотт.

    «Атом не совершал путь между условными точками А и B, - поясняет он. - Только после измерений в конечной точке наблюдения, становилось понятно повел ли себя атом как волна, разделяясь по двум направлениям, или как частица, выбирая одно».

    Несмотря на то, что все это звучит дико для непосвященного человека, авторы исследования говорят, что эксперимент является подтверждением квантовой теории. По крайней мере, в мельчайших масштабах.

    Эта теория уже позволила создать ряд вполне работоспособных технологий в области лазеров и компьютерных процессоров, но до сих пор таких ярких экспериментов, подтверждающих ее, не было. Траскотт и Хакимов в сущности нашли подтверждение тому, что реальность не существует, пока мы ее не наблюдаем.

    Это один из основополагающих тезисов квантовой теории. Именно его невероятность с точки зрения обывателя, для которого дождь не перестает идти, даже если ты закроешь глаза, чтобы его не видеть, делают квантовую теорию «оторванной от реальности».

    До сих пор не было найдено никаких доказательств того, что этот принцип действует в реальности. Мысленный эксперимент Уилера, равно как и подтверждающий его практический эксперимент Траскотта, пока относятся лишь к квантовому уровню.

    В то же время, некоторые философы считают, что даже будучи неприменимой к макро уровню, квантовая теория может быть полезной для обывателя, поскольку (будучи грубо сформулированной) гласит, что мир является в точности таким, каким мы его видим.

    Материалы по теме

    Пять триллионов рублей в год для роста ВВП: реальность или миф?

    На Красной площади художницу задержали за акцию в очках виртуальной реальности

    В Кремле ждут, что новые губернаторы сами обеспечат "новую политическую реальность"

    Наука

    Категорія: Ц І К А В Е. Астрономія | Додав: SvetlanaCh
    Переглядів: 910 | Завантажень: 0 | Рейтинг: 0.0/0
    Всього коментарів: 0
    avatar

    Категорії розділу

    Ц І К А В Е. Астрономія [260]
    1. Предмет астрономії. Її розвиток і значення [38]
    Предмет астрономії. Її розвиток і значення в житті суспільства. Короткий огляд об'єктів дослідження в астрономії. Визначення астрономії як фундаментальної науки, яка вивчає об'єкти Всесвіту. Коротка історія астрономії. Значення астрономії у формуванні світогляду людини.
    2. Небесна сфера. Рух світил на небесній сфері [26]
    2. Небесна сфера. Точки і лінії на ній. Сузір'я. Зоряні карти.
    3. Системи небесних координат. Екваторіальні координати. Добовий рух світил [54]
    Системи небесних координат. Екваторіальні координати. Добовий рух світил. Кульмінації. Добовий рух Сонця. Вимірювання часу.
    4. Видимий річний рух Сонця. Видимий рух Місяця. Видимий рух планет. Сонячні й місячні затемнення [67]
    Видимий річний рух Сонця. Видимий рух Місяця. Видимий рух планет. Сонячні й місячні затемнення. Календар
    5. Методи та засоби астрономічних досліджень. Наземні й орбітальні телескопи [36]
    Методи та засоби астрономічних досліджень. Наземні й орбітальні телескопи: оптичні, радіотелескопи, телескопи з прийому виромінювання в інших діапазонах. Астрономічні обсерваторії.
    6. Наша планетна система [214]
    Земля і Місяць як небесні тіла. Планети земної групи: Меркурій, Венера, Марс та його супутники. Планети-гіганти (Юпітер, Сатурн, Уран, Нептун, Плутон) та їх супутники.
    7. Малі тіла Сонячної системи - астероїди, комети, метеорити [47]
    Малі тіла Сонячної системи - астероїди, комети, метеорити. Формування планетної системи.
    8. Сонце - найближча зоря [62]
    Основні відомості про Сонце. Будова Сонця. Джерела його енергії. Будова Сонячної атмосфери. Прояви сонячної активності, її вплив на атмосферу Землі.
    9. Зорі. Еволюція зір [46]
    Зорі - основні об'єкти Всесвіту. Основні характеристики зір: температура, світність, радіус, маса, їх взаємозв'язок. Подвійні зорі. Фізично змінні зорі. Внутрішня будова і джерела енергії зір. Еволюція зір. Нейтронні зорі. Чорні дірки
    10. Наша Галактика. Будова і еволюція Всесвіту. Життя у Всесвіті [61]
    Наша Галактика. Молочний шлях. Місце Сонця в Галактиці. Зоряні скупчення та асоціації. Туманності. Підсистеми Галактики та її спіральна структура. Будова і еволюція Всесвіту. Світ галактик. Квазари. Проблеми космології. Походження і розвиток Всесвіту. Життя у Всесвіті. Що таке життя? Земля - колиска життя. Імовірність існування життя на інших планетах. Людина у Всесвіті. Антропний принцип. Проблема існування інших всесвітів
    11. Найновіші відкриття в астрономії. Сучасна наукова астрономічна картина світу. [75]
    Найновіші відкриття в астрономії. Сучасна наукова астрономічна картина світу...
    Тести [4]
    Найбільш ефективним способом визначення навчальних досягнень учнів є тест — система спеціальних завдань для виявлення факту за¬своєння певних видів навчальної діяльності.
    Критерії оцінювання навчальних досягнень [1]

    Вхід на сайт

    Пошук

    СПІВПРАЦЯ

  • МОН України
  • Міська Рада м.Миргород
  • ПОІППО
  • Міськво м.Миргород
  • Телестудія МИРГОРОД
  • Шкільний канал YouTube
  • E-mail та сайти вчителів
  • ЗОШ №7